The penetration of solar PV in Japan

1

Innovation and Entrepreneurship in Japan JFIT-STAJE conference at UC San Diego

Ahmed Abdulla ayabdulla [at] ucsd [dot] edu

May 6, 2016

School of Global Policy and Strategy

Multiple prongs to Japanese policy

- · Diversify sources of energy, specifically electricity
 - Develop advanced coal-fired power plants (00s/10s)
 - Pioneer liquefied natural gas development (70s/80s)
 - Strike Faustian bargain with nuclear power (70s/80s)
 - Develop and deploy renewables
- · Find and help develop liquid hydrocarbon sources
 - Softly "claim" them for Japan (e.g. Arun)
 - Strike long-term contracts
 - Diversify exporting countries (e.g. China)
- Maintain friendly relations with source countries
- Emphasize energy efficiency

Cautionary notes about what follows

- Not all renewables are equal
 - I will discuss solar PV specifically
 - Different sources pose different institutional challenges
 - Differences between solar, wind, and nuclear striking
- We need to distinguish between
 - Development
 - · Research into solar PV technologies
 - Deployment
 - · Demonstration in real world conditions
 - Institutional framework development

5/6/16

School of Global Policy and Strategy

Solar PV enhances energy security

- Opportunities afforded by solar PV
 - Gaining prestige: remaining at the technological frontier
 - Mitigating environmental damage
 - Encouraging electricity market liberalization
 - Creating economic (export) opportunities
 - Developing human capital
 - Enhancing energy security

Why has Japanese PV not swept the world?

6

The history of solar PV in Japan

- Checkered history:
 - Government R&D (GERD) into solar photovoltaics (PV) began in earnest after the 1973 oil shock (Sunshine)
 - Private industry had been investing in solar PV for at least a decade before the shock
- Institutions only halfheartedly embraced solar PV (if that). Possible reasons:
 - GERD was mainly due to technological novelty
 - Economic prospects were bleak (cost-effectiveness)
 - Existing coalition resisted the technology in favor of fossil fuel and nuclear interests

5/6/16	School of Global Policy and Strategy	7
R&E) expenditures were non-trivial	
PV total R&D (MUSD)	180 140 120 100 80 60 40 20 0 1975 1985 1995 2005 201	35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 15
5/6/16	School of Global Policy and Strategy	

JPN GER 35,000 180 160 30,000 PV total R&D (MUSD) 140 25,000 120 20,000 100 80 15,000 60 10,000 40 5,000 20 0 0 1985 2005 1975 1995 2015

Compare to German PV R&D

5/6/16

School of Global Policy and Strategy

9

production (GWh)

≧

Japan:Germany total PV R&D 5 PV R&D in JPN > GER 26 years 4.5 PV R&D in JPN < GER 16 years 4 Japan:Germany ratio 3.5 3 2.5 2 1.5 1 0.5 0 1995 1975 1985 2005 2015

5/6/16

School of Global Policy and Strategy

Japan:Germany GERD

Japan's PV R&D did not deliver results

Despite Japan investing more than Germany in solar PV R&D:

- In 2010, share of Japanese electricity from solar PV: 0.1%
- In 2010, share of German electricity from solar PV: 2%
- Market position of Japanese solar PV manufacturers deteriorates despite exploding demand.

Fraunhofer Institute for Solar Energy Systems https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaicsreport-in-englischer-sprache.pdf

5/6/16

School of Global Policy and Strategy

13

Japan's PV manufacturers biggest losers

	2000	2003	2006	2014	2015	
1	Kyocera	Sharp	Sharp	Trina	Trina	
2	BP	BP	Hanwha	Yingli	Canadian	
3	Sharp	Kyocera	Kyocera	Canadian	Jinko	
4	Shell	Shell	Suntech	Hanwha	JA	
5	AstroPower	Industry protection through			Hanwha	
6	RWESchott	high module costs			First	
7	Photowatt	Sanyo	RWESchott	Sharp	Yingli	
8	Isofoton	Isofoton	Motech	ReneSola	SFCE	
9	Sanyo	Hanwha	BP	First	ReneSola	
10	Mitsubishi	Photowatt	SunPower	Kyocera	SunPower	
	35%	50%	42%	< 4%	NA	
		R	E World; IHS; PV Te	ch		
5/6/16		School of (Global Policy and St	rategy		

R&D did not translate into deployment

Possible reasons:

- Support for tech. *development* does not automatically translate to support for tech. *deployment*.
 - You need dedicated policy instruments for solar PV deployment. Japan's were weak until 2012.
- Japan chose the wrong areas of solar PV R&D to explore
- Japan was nurturing PV strictly for export market
 - National energy strategies emphasized
 - Energy security
 - · Development of new energy technologies
 - Sustainable development

5/6/16	School of Global Policy and Strategy

Japan solar PV deployment incentives

- 1974: Sunshine Program
 - Long-horizon, multi-technology effort to enhance energy security and end fossil fuel dependence
 - Solar thermal → solar PV
- 1992-1994: Net metering and New Sunshine Program
 - Deployment of grid-connected distributed systems
 - Subsidy tapers off. Ends in 2004 by design
 - Good idea poorly implemented (steep taper)
- 2003: Weak Renewable Portfolio Standard
- 2009: Reinstatement of PV subsidy + Feed-in-Tariff (TiF)
- 2012: More aggressive FiT structure

16

2000-2012: Distributed PV deployment

The argument in brief

- Japan spent more money on solar PV R&D than Germany
- Japan had the industrial base, economies of scale, and human capital to maintain its dominance in PV manufacture
- Domestic deployment would have: 1) enhanced energy security; 2) mitigated emissions; 3) buoyed Japanese PV industry; and 4) catalyzed innovations in system optimization and grid integration
- But, domestic deployment tracks govt. incentive structure
 - Poor showing due to poor institutional and policy design
 - It took Fukushima to catalyze widespread deployment
 - Japan now has 3rd largest PV capacity (>24GW), 70% of it installed after Fukushima
 - Fukushima made utilities interested in centralized PV

We are exploring the following at GPS

- Expanding on the above story
 - Estimating loss to Japan of letting its PV industry falter
 - Economic; environmental; human capital
- · What are the implications of a Japanese nuclear phase-out?
 - Both economic and environmental
- Mapping the resources available to Japan for expanding biomass, solar, wind, and geothermal
 - Detailed GIS mapping

